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patients, this positive relationship disappeared. Our find-
ings suggest an involvement of habenula pathology in the 
beginning of MDD, while general effects independent of 
severity or stage of disease did not occur. Our findings war-
rant future combined tractographic and functional investi-
gation using ultra-high-resolution in vivo MR imaging.

Keywords 7 Tesla magnetic resonance imaging · 
Habenula · Major depression · MDD · MRI

Introduction

The habenula is a paired epithalamic structure with medial 
and lateral subdivisions which receive synaptic input pre-
dominantly from the lateral hypothalamus, amygdala and 
basal ganglia via the medullary stria, and project mainly 
to serotonergic dorsal (DRN) and medial (MRN) raphe 
nuclei, the dopaminergic ventral tegmental area (VTA), 
and the substantia nigra pars compacta [1]. Mainly inhibit-
ing serotonergic and dopaminergic neuron activity [2], the 
habenula is regarded as a regulatory unit for the interplay 
between the cerebral cortex, limbic areas and monoaminer-
gic activity of the midbrain [3]. Thus, it is involved in the 
adaptive response to stress, punishment and motor activity 
during reward processes [4–8]. In animal models of depres-
sion, lesions of the habenula led to a reduction of depres-
sive behavior and to increased concentrations of serotonin 
(5-HT) in the DRN [9]. Habenula metabolism was increased 
in rats exhibiting depressive behavioral features which 
could be reversed by the application of antidepressants [10], 
potentially via the regulation of γ-aminobutyric acid [11]. 
In a mouse model of depression, the frequency of excita-
tory input of lateral habenula neurons onto VTA neurons 
was related to depressive behavior [10]. Pharmacological 

Abstract The habenula is a paired epithalamic structure 
involved in the pathogenesis of major depressive disorder 
(MDD). Evidence comes from its impact on the regulation 
of serotonergic and dopaminergic neurons, the role in emo-
tional processing and studies on animal models of depres-
sion. The present study investigated habenula volumes in 
20 unmedicated and 20 medicated MDD patients and 20 
healthy controls for the first time by applying a triplanar 
segmentation algorithm on 7 Tesla magnetic resonance 
(MR) whole-brain T1 maps. The hypothesis of a right-side 
decrease of habenula volumes in the MDD patients was 
tested, and the relationship between volumetric abnormali-
ties and disease severity was exploratively investigated. 
Absolute and relative total and hemispheric habenula vol-
umes did not differ significantly between the three groups. 
In the patients with short duration of disease for which 
medication effects could be ruled out, significant correla-
tions were found between bilateral habenula volumes and 
HAMD-17- and BDI-II-related severities. In the medicated 

Stefan Geyer and Peter Schönknecht shared senior authorship.

 * Frank M. Schmidt 
 frank.schmidt2@medizin.uni-leipzig.de

 Peter Schönknecht 
 peter.schoenknecht@medizin.uni-leipzig.de

1 Clinic for Psychiatry and Psychotherapy, Department 
of Mental Health, University Hospital Leipzig, 
Semmelweisstr. 10, 04103 Leipzig, Germany

2 Max Planck Institute for Cognitive and Brain Sciences, 
Stephanstr. 1a, 04103 Leipzig, Germany

3 Clinical Affective Neuroimaging Laboratory, Leibniz 
Institute for Neurobiology, Otto-von-Guericke University, 
ZENIT building 65, Leipziger Str. 44, 39120 Magdeburg, 
Germany

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00406-016-0675-8&domain=pdf


 Eur Arch Psychiatry Clin Neurosci

1 3

inhibition and deep brain stimulation (DBS) of the habenula 
showed antidepressive effects in different rat models of 
depression [12–15]. Hence, according to the therapeu-
tic response in major depressive disorder (MDD) [16], the 
habenular complex has become a proposed target site for 
DBS in MDD [17]. Investigations with positron emission 
tomography in unmedicated depressed patients showed that 
treatment response was predicted by pre-treatment serotonin 
transporter (SERT) binding ratios within the habenula [18]. 
A volumetric postmortem analysis in a mixed sample of 
14 medicated unipolar and bipolar depressed patients (BP) 
[19] showed a reduction of right medial (−24 %) and lat-
eral (−20 %) habenula volumes when compared to schiz-
ophrenic patients and controls. To date, two studies have 
investigated habenula volumes in MDD patients in vivo 
[20–22]. Using 3-Tesla magnetic resonance (MR) images, 
the first investigation revealed decreased right hemisphere 
habenula volumes in female MDD patients. Smaller abso-
lute and relative habenula left and right volumes were found 
in BP compared to controls. In contrast, the recent analysis 
showed that medicated women with a first-episode MDD 
had higher overall habenula volumes compared to healthy 
controls [22]. When investigating patients with post-trau-
matic stress disorder, significant volume differences com-
pared to controls were not found [23].

The cellular correlates of habenula volume changes in 
mood disorders have been largely unknown. Recent evi-
dence converges on cell-type-specific trajectories which 
distinguish early, mainly astroglial involvement [15] fol-
lowed by chronic neuronal damage and even glial swell-
ing during the later course of the disease [24]. To better 
understand pathological changes, first or recurrent disease 
episode as well as psychotropic medication has to be taken 
into account. But most important, given the small size of 
this structure, an increase in spatial resolution by using 
recent ultra-high field methods is essential [25].

In the present study, we investigated habenula volumes 
in 20 unmedicated and 20 medicated acutely ill MDD 
patients and 20 healthy controls by applying a triplanar 
segmentation algorithm to 7T MR images. Based on prior 
findings, a right-side decrease of habenula volumes was 
expected in the MDD patients. Furthermore, since little 
evidence exists to which extent volumetric abnormalities 
do correlate with disease severity, we investigated explora-
tively this relationship in both patient samples.

Methods

Subjects

Patients meeting the criteria of the Diagnostic Statistical 
Manual IV (DSM IV) for a depressive episode or recurrent 

depressive disorder were recruited from the Department of 
Mental Health, Clinic for Psychiatry and Psychotherapy, 
University Hospital Leipzig. Disease severity, confirmation 
of diagnosis, and psychiatric comorbidities were assessed 
using a structured clinical interview for DSM IV (SCID) 
under supervision of a specialist in psychiatry. Disease 
severity at the time of scanning was quantified using the 
Hamilton Depression Rating Scale (HAMD-17), Inven-
tory of Depressive Symptoms (IDS-C), Beck Depression 
Inventory II (BDI-II), and Bech Rafaelsen Melancholia 
Scale (BRMS). Exclusion criteria were: history or inci-
dental findings of neurological disorders, history of head 
injury >I°, suicidality, current or earlier substance abuse or 
addiction, severe somatic disorder, and general MR imag-
ing exclusion criteria. For the healthy controls, exclusion 
criteria further comprised a lifetime history of psychiatric 
diagnoses. All subjects gave written informed consent. The 
study protocol was approved by the Ethics Committee of 
the University of Leipzig.

Image acquisition

Whole-brain T1-maps images were acquired with a 7T 
whole-body MR scanner (MAGNETOM 7T, Siemens, 
Erlangen, Germany) and a 24-channel NOVA head coil 
(Nova Medical, Inc., Wilmington MA, USA). A modi-
fied 3D magnetization-prepared 2 rapid acquisition gradi-
ent echoes sequence (3D MP2RAGE [26]) was used with 
repetition time (TR) = 8250 ms, inversion times (TI1/
TI2) = 1000/3300 ms, flip angles (FA1/FA2) = 7°/5°, echo 
time (TE) = 2.51 ms, bandwidth (BW) = 240 Hz/Pixel, 
1 average. A field of view (FOV) of 224 × 224 mm2, an 
imaging matrix of 320 × 320, and 240 slices with a thick-
ness of 0.7 mm resulted in a nominal acquisition voxel size 
of 0.7 mm isotropic. By accelerating the acquisition using 
parallel imaging (GRAPPA [27]; acceleration factor = 2), 
a scan time of 18:02 min was achieved. The whole-brain 
volume (WBV) was determined using FMRIB Software 
Library (FSL) [28] using native brain images after skull-
stripping with Medical Image Processing, Analysis, and 
Visualization (MIPAV) version 6.0.0 [29].

Computer‑assisted interactive segmentation of the 
habenula on 7T MR images

The interactive habenula segmentation in triplanar view 
was performed using ITK-SNAP [30] version 2.2.0. In 
order to assure constant contrast in all images, a fixed inten-
sity scale was used ranging from I = 0 (black) to I = 4000 
(white). First, habenula landmarks were developed with 
reference to the postmortem single brain atlas by Mai et al. 
[31]. Based on the landmarks, a detailed interactive seg-
mentation algorithm of the habenula on high-resolution 
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T1 maps was developed (Table 1; Fig. 1). The region of 
interest (ROI) included the entire habenula complex (i.e., 
medial and lateral division) in both hemispheres. The med-
ullary stria, fasciculus retroflexus, and habenular commis-
sure were excluded from segmentation. The habenula was 
segmented unilaterally in all three planes. The first segmen-
tation step was performed in coronal planes which served 
as reference. This means that the segmentation results in 
the other two planes (transverse, second step, and sagittal, 
third step) were rechecked in the coronal plane, and voxels 
were added or rejected in these planes according to the ana-
tomical plausibility in the coronal plane. Depending on the 
border of the habenula, each rater was trained to include 
(liberal decision) or to exclude (conservative decision) 
inconclusive voxel (Table 1). We determined a cutoff value 
in each landmark which was applied in anatomically incon-
clusive voxels. Accordingly, voxel with gray level intensity 
>1800 was attributed to non-habenular tissue and with gray 
level intensity >3000 to surrounding cerebrospinal fluid. 
Projections which deviated from the outline of the mask 
to the maximum length of one voxel were reduced. After 
a training period, two investigators (F.S., M.A.) traced the 
left and the right habenula of ten subjects in independent 
segmentation runs. The inter-rater reliability (ICC; [32]) 
was 0.95 for the right and 0.96 for the left habenula. During 
all segmentations, raters were blind to diagnosis.

Statistics

Following normal distribution of habenula volumes (Kol-
mogorov–Smirnov test: p > 0.05), the hypothesis of 
reduced right-side habenula in MDD was tested by apply-
ing a general linear model with repeated measures with 
absolute and relative right-versus-left hemisphere as 
within-subjects factor and group, sex, and the interaction 
of group and sex as the between-subjects factors. For abso-
lute and relative bihemispheric habenula volumes, ANOVA 
with volume as the dependent variable and group and sex 
as the categorical independent variables was applied. For 
differences of WBV between groups, single-factor ANOVA 
was applied. For differences between groups regarding 
sex and handedness, Chi-square tests were computed. For 
differences in sum scores of BDI-II, HAMD-17, IDS-C 
and BRMS, Mann–Whitney U tests were applied. Group 
differences regarding age and number of depressive epi-
sodes were tested with independent samples t tests. A 
median-split of the HAMD-17 scores resulted in a cutoff 
of 17 points separating mildly from moderate-to-severely 
depressed patients. Correlations between habenula volumes 
and clinical variables were performed with Spearman’s 
rank correlation coefficient. For post hoc analyses of indi-
vidual group differences in habenula volume, single-factor 
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ANOVAs and independent samples t test were applied. For 
all analyses, level for significance was set at p < 0.05.

Results

Groups did not vary in clinical variables age, sex, and 
handedness, whereas unmedicated depressed patients had 
significantly fewer episodes of depression compared to 
medicated patients (Table 2).

No interactions between the within-subjects factor ‘hem-
isphere’ and between-subjects factor ‘group’ were observed 
in absolute (F = 1.776, p = 0.179) and relative habenula 
volumes (F = 0.000, p = 1.00; Table 2; Fig. 2a). Interaction 
analyses for ‘hemisphere × sex’ revealed significance for 
relative volumes (F = 7.789, p = 0.007) but not absolute 
volumes (F = 0.138, p = 0.712). Post hoc tests between 
sexes on relative volumes revealed a difference of 13 % 
in right (males right: 1.05 × 10−5 ± 2.53 × 10−6 mm3; 
females right: 1.21 × 10−5 ± 2.53 × 10−6 mm3; 
F = 2.663, p = 0.054) and 12 % in left relative habenula 
(males left: 1.03 × 10−5 ± 2.50 × 10−6 mm3; left: 
1.16 × 10−5 ± 2.50 × 10−6, left F = 2.265, p = 0.096). No 
interactions between ‘hemisphere × groups × sex’ were 
found for absolute volumes (F = 0.096, p = 0.909) nor 
relative volumes (F = 0.000, p = 1.000).

No significant differences in total absolute and total 
relative habenula volumes were observed between 
the three groups (Table 2). Interaction between vol-
umes × sex trended in the relative habenula volumes 
(F = 3.059, p = 0.086; absolute volumes: F = 0.097, 
p = 0.757). No significant interaction between total 

volumes × groups × sex arose (absolute volumes: 
F = 0.096, p = 0.909; relative volumes: F = 0.000, 
p = 1.000).

Variances for total and hemispheric habenula volumes 
were found significantly lower in the medicated MDD 
when compared to the unmedicated MDD and healthy 
controls (3-group comparison: total volume absolute: 
p = 0.004, relative: p = 0.01, right hemisphere volume 
absolute: p = 0.037, relative: p = 0.031, left hemisphere 
volume absolute: p = 0.011, relative: p = 0.108; see 
Fig. 2). In these cases of unequal variances, ANOVA tends 
to be liberal [33], i.e., the true alpha error might exceed 
the p value reported here. However, according to [34], the 
requirements for a robust ANOVA with heterogeneous 
variances are fulfilled, as the number of subjects in each 
group is similar, the populations are normally distributed, 
and the ratio of the largest variance/smallest variance is 
<=3.

Correlation analyses between habenula volumes 
and severity of depressive episodes in the unmedicated 
MDD showed significant correlations between HAMD-
17 scores and absolute right, absolute left, relative left, 
and absolute bihemispheric habenula volumes. For 
BDI-II and IDS-C, significant correlations were found 
for the absolute left habenula volume. Nonsignificant 
trends were found for correlations between the HAMD-
17 and the relative bihemispheric volume, between the 
BDI-II and relative left and absolute bihemispheric 
volumes and between the IDS-C and absolute bihemi-
spheric habenula volumes. For the medicated MDD, 
none of the severity scores were found to correlate 
with habenula volumes (Table 3; Fig. 2b). Divided 

Fig. 1  Habenula nuclei in the coronal (a, b) transversal (c, d), and sagittal (e, f) planes. Native T1 maps (a, c, e) and T1 maps with segmented 
habenula voxels overlay in green (b, d, f). For segmentation algorithm, see Table 1
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into groups according to the severity of depression in 
the HAMD-17 scores at time of scan, the unmedicated 
moderate-to-severely depressed MDD (n = 10) showed 
significantly higher absolute left (20.07 ± 6.38 mm3; 
p = 0.026) and absolute bihemispheric habenula vol-
umes (40.44 ± 13.19 mm3; p = 0.039) compared 
to the unmedicated mildly depressed MDD (abso-
lute left volume 15.23 ± 4.67 mm3; absolute bihemi-
spheric volume 29.54 ± 8.14 mm3; n = 10). Between 
these groups, mean differences in relative left (mod-
erate–severe 0.97 × 10−5 ± 2.64 × 10−6 mm3, mild 
1.25 × 10−5 ± 3.47 × 10−6 mm3; p = 0.061) and abso-
lute right volumes (moderate–severe 20.37 ± 7.09 mm3, 
mild 15.23 ± 4.67 mm3; p = 0.072) showed a trend 
toward significance. For the medicated MDD, no signifi-
cant difference in volumes between the mildly depressed 
(n = 9) and moderate-to-severely depressed patients 
(n = 11) arose.

No significant correlations were found between relative 
and absolute habenula volumes and age within the overall 
sample as well the separate groups.

Discussion

To our knowledge, this is the first high-resolution 7T 
MR-based three-dimensional volumetric investigation of 
habenula volumes in human subjects applied in a sample of 
unmedicated MDD patients, medicated MDD patients, and 
healthy controls.

In accordance with the two in vivo MR imaging (3T) 
studies in MDD published to date [20–22], the bihemi-
spheric habenula volume did not differ between unmedi-
cated or medicated MDD compared to controls. In addi-
tion, by exploiting the potential of the high magnetic field 
strength to reveal small alterations in cerebral morphol-
ogy, we did not find hemispheric or sex-related differences 
in habenula volume change in MDD patients. However, 
we could demonstrate significant correlations between 
habenula volume and disease severity in unmedicated 
MDD, but not in medicated patients. We found a significant 
habenula volume increase in severely compared to mildly 
depressed unmedicated patients, whereas no such volume 
differences existed in the medicated group.

Table 2  Clinical characteristics and habenula volumes

Hb habenula, HAMD Hamilton Depression Rating Scale, BDI-II Beck Depression Inventory, IDS-C Inventory of Depressive Symptoms, BRMS 
Bech Rafaelsen Melancholia Scale, SD standard deviation, WBV whole-brain volume
a Single-factor ANOVA
b Chi-square test
c Mann–Whitney U tests
d Independent samples t test

Unmed. MDD Med. MDD HC Test statistic p values

(n = 20) (n = 20) (n = 20)

Age at scan (years ± SD)a 36.20 ± 12.83 40.60 ± 12.11 36.45 ± 13.16 F = 0.757 0.474

Sex (female/male)b 12/8 13/7 12/8 χ2 = 0.141 0.932

Hand (right/left)b 19/1 19/1 18/2 χ2 = 0.536 0.765

HAMD-21 (score ± SD)c 16.40 ± 7.76 15.55 ± 8.89 NA F = 0.992 0.749

BDI-II (score ± SD)c 26.35 ± 10.19 21.60 ± 10.59 NA F = 0.062 0.157

IDS-C (score ± SD)c 31.30 ± 12.35 29.40 ± 13.00 NA F = 0.011 0.638

BRMS (score ± SD)c 16.30 ± 4.94 14.40 ± 7.39 NA F = 4.357 0.345

Number of depressive  
episodes (±SD)d

1.70 ± 1.56 5.75 ± 5.47 NA F = 6.995 0.003

Absolute total Hb volume  
(in mm3 ± SD)a

34.99 ± 12.04 34.16 ± 3.52 34.92 ± 11.34 F = 0.045 0.956

Relative total Hb volumea 2.23 × 10−5 ± 6.73 × 10−6 2.25 × 10−5 ± 3.07 × 10−6 2.26 × 10−5 ± 7.68 × 10−6 F = 0.000 1.000

Absolute right Hb volume  
(in mm3 ± SD)a

17.80 ± 6.41 17.70 ± 2.78 17.29 ± 6.12 F = 0.051 0.950

Relative right Hb volumea 1.15 × 10−5 ± 3.67 × 10−6 1.17 × 10−5 ± 2.06 × 10−6 1.12 × 10−5 ± 4.19 × 10−6 F = 0.000 1.000

Absolute left Hb volume 
(mm3 ± SD)a

17.18 ± 5.94 16.45 ± 2.49 17.63 ± 5.49 F = 0.295 0.746

Relative left Hb volumea 1.11 × 10−5 ± 3.32 × 10−6 1.09 × 10−5 ± 2.01 × 10−6 1.14 × 10−5 ± 3.62 × 10−6 F = 0.000 1.000

WBV (mm3 ± SD)a 1,543,088 ± 159,754 1,529,104 ± 140,602 1,554,703 ± 122,644 F = 1.164 0.331
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These findings as well as a markedly reduced varia-
tion in habenula volumes in the medicated group point 
toward a potential effect of medication or stage of disease 
on habenula volume. Concerning an influence of duration 
of the disorder, support comes from a recent study show-
ing volume differences between medicated females only in 
those patients with a first-time episode as well as moder-
ate negative correlations between habenula volumes and 
disease duration [22]. A state-dependent volume change 
which should hold true only during an acute episode may 
be assumed. Although habenula volumes did not correlate 
with the number of episodes within this study, the fact of 
significantly fewer depressive episodes in unmedicated 

compared to medicated patients further supports that 
changes in habenula volumes may be restricted to the early 
course of the disorder. Furthermore, in the unmedicated 
patients, the backward inhibition from serotonergic and 
dopaminergic regions [1] may be reduced. In the medicated 
subjects, the antidepressant medication may compensate 
for the pathogenic reduction in inhibition, as seen in animal 
models of depression [10, 11, 15].

The importance of disease stage on glial and neuronal 
development has recently been stressed by Rajkowska 
and Miguel-Hidalgo [24]. They argued for primary reduc-
tions in glial numbers within the beginning of the disorder, 
leaving neuronal cells unaffected; at later stages, chronic 
excitotoxicity would lead to neuronal decline and astro-
glial swelling. Acknowledging variations to these cortical 
processes, increases in both gliogenesis and neurogenesis 
may be found, especially in subcortical structures that 
could lead to opposite volumetric effects. Such a model 
favors our findings showing increased volumes, especially 
in acutely and severely depressed patients with a clinical 
course of one or only a few episodes. Taking into consid-
eration that clinical severity itself may be a risk factor for 
chronification [35], it is striking to see that most severe 
cases show early volume increases followed by a gradual 
decrease toward uniformly low volumes at a chronic stage. 
In other words, one may expect our medicated chronic 
group to be more homogeneous than the unmedicated sam-
ple which would be reflected by the smaller variations in 
habenula volumes.

One of the strengths of the present study—in contrast 
to reliable but only approximate geometric approaches 
[36]—is its methodologically approach based on a three-
dimensional segmentation algorithm in coronal, transver-
sal and sagittal planes of high-resolution 7T MR images. 
This provides the basis for a reliable identification of the 
habenula and the precise definition of borders to surround-
ing anatomical structures. Furthermore, the quantitative 
T1 maps show a strong contrast between the habenula and 
surrounding brain tissue due to the high myelin content of 
the habenula as a white matter structure connecting lim-
bic and midbrain areas [37, 38]. There is very strong evi-
dence that maps of T1 values reflect cortical myelin content 
[39], which encourages the use of such maps for cortical 
parcellation based on myelination at high field strengths 
[37]. Conventional T1-weighted images are, however, not 
only sensitive to differences in T1 relaxation but also to 
other factors, like proton density or T2*, depending on the 
sequence parameters used. Since T1-weighted images as 
applied in the aforementioned study [20] do not specifically 
reflect myelin content, the different display of the two stud-
ies may further account for the differing results.

A calculation of the interaction between sexes and 
hemisphere showed, irrespective of the group, a 12–13 % 

Fig. 2  a Scatterplot of absolute hemispheric habenula volumes 
across the diagnostic groups. Means did not differ significantly 
between groups, whereas variances were found reduced in the medi-
cated MDD. MDD major depressive disorder, HC healthy controls. 
b Significant correlation between total scores in HAMD-21 and 
absolute habenula volumes in the unmedicated MDD (r = 0.508, 
p < 0.05)
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reduction in mean volumes in males compared to females. 
Support for a potential sexual dimorphism in habenula 
volumes comes from studies that detected sex hormone-
binding globulin [40] and estrogen receptors [41] in the 
habenula that facilitate female sexual receptivity [42]. 
Given the strong glutamatergic input to the habenula, the 
previously discussed neuroprotective mechanisms of estro-
gen receptors such as upregulation of glutamine synthetase 
and glutamate transporters [43] would support our obser-
vation and further strengthen the role of glial mechanisms 
in regulating habenula size. Furthermore, the habenula con-
tains progesterone-sensitive arginine vasopressin-immuno-
reactive fibers originating from neurons in the amygdala 
which are known to be higher in number in males and to 
influence anxiety-related behavior, social affiliation, and 
aggression [44]. Also, cytochrome oxidase activity as an 
indicator of cerebral metabolic capacity was found elevated 

in the female compared to male habenula [45]. Though an 
interaction between habenula volume and sex independent 
of a diagnosis of MDD has not been investigated in the two 
structural studies [19, 20], the finding of reduced habenula 
volumes in female MDD patients prompted the authors 
[20] to argue that excitotoxic damage to the habenula is 
more pronounced in females than in males.

The present study has several limitations that need to be 
addressed. The size of the present sample and subgroups may 
have led to type II errors with an under-recognition of pos-
sible subtle differences in habenula volumes between groups. 
We have to acknowledge that by using the present approach, 
even on high-resolution 7T MR, it was not possible to sepa-
rate the habenula into medial and lateral divisions as it has 
been shown ex vivo [25]. Since both components appear to 
have some independent functions, the combined measure-
ment may not therefore fully account for distinct changes in 

Table 3  Association between clinical variables and habenula volumes

Significant correlations are in bold

BDI-II Beck Depression Inventory, HAMD Hamilton Depression Rating Scale, IDS-C Inventory of Depressive Symptoms, BRMS Bech 
Rafaelsen Melancholia Scale, HC healthy controls

Absolute right Hb 
volume

Relative right Hb 
volume

Absolute left Hb 
volume

Relative left Hb 
volume

Absolute total Hb 
volume

Relative total 
Hb volume

Unmedicated MDD

 Age at scan r = −0.061, 
p = 0.799

r = 0.039,  
p = 0.871

r = −0.013, 
p = 0.956

r = 0.080,  
p = 0.737

r = −0.226, 
p = 0.339

r = 0.061, 
p = 0.799

 Number  
of episodes

r = −0.021, 
p = 0.929

r = −0.052, 
p = 0.830

r = −0.002, 
p = 0.993

r = −0.027, 
p = 0.909

r = 0.149,  
p = 0.530

r = −0.041, 
r = 0.862

 BDI-II r = 0.359,  
p = 0.120

r = 0.274,  
p = 0.243

r = 0.462, 
 p = 0.040

r = 0.415,  
p = 0.069

r = 0.419,  
p = 0.066

r = 0.354, 
p = 0.126

 HAMD-21 r = 0.474, 
 p = 0.035

r = 0.371,  
p = 0.107

r = 0.519, 
 p = 0.019

r = 0.457,  
p = 0.043

r = 0.508,  
p = 0.022

r = 0.428, 
p = 0.060

 IDS-C r = 0.370,  
p = 0.108

r = 0.227,  
p = 0.336

r = 0.459,  
p = 0.042

r = 0.364,  
p = 0.114

r = 0.424,  
p = 0.063

r = 0.304, 
p = 0.193

 BRMS r = 0.368,  
p = 0.111

r = 0.317,  
p = 0.174

r = 0.370,  
p = 0.109

r = 0.346,  
p = 0.135

r = 0.378,  
p = 0.100

r = 0.343, 
p = 0.138

Medicated MDD

 Age at scan r = −0.126, 
p = 0.598

r = −0.044, 
p = 0.853

r = −0.294, 
p = 0.208

r = −0.169, 
p = 0.477

r = −0.129, 
p = 0.589

r = −0.140, 
p = 0.556

 Number  
of episodes

r = −0.206, 
p = 0.398

r = 0.039,  
p = 0.874

r = 0.076,  
p = 0.758

r = 0.348,  
p = 0.144

r = −0.372, 
p = 0.117

r = 0.356, 
p = 0.135

 BDI-II r = −0.295, 
p = 0.208

r = −0.250, 
r = 0.287

r = −0.007, 
p = 0.976

r = 0.057,  
p = 0.812

r = −0.009, 
p = 0.969

r = −0.130, 
p = 0.584

 HAMD-21 r = −0.097, 
p = 0.683

r = −0.204, 
p = 0.387

r = −0.116, 
p = 0.627

r = −0.158, 
p = 0.505

r = 0.221,  
p = 0.349

r = −0.240, 
p = 0.308

 IDS-C r = −0.210, 
p = 0.373

r = −0.241, 
p = 0.305

r = 0.044,  
p = 0.853

r = 0.029,  
p = 0.902

r = −0.135, 
p = 0.571

r = −0.142, 
p = 0.549

 BRMS r = −0.099, 
p = 0.678

r = −0.167, 
p = 0.481

r = −0.071, 
p = 0.765

r = −0.096, 
p = 0.688

r = −0.129, 
p = 0.589

r = −0.174, 
p = 0.462

HC

 Age at scan r = −0.058, 
p = 0.808

r = 0.017,  
p = 0.943

r = −0.161, 
p = 0.498

r = −0.081, 
p = 0.735

r = −0.109, 
p = 0.647

r = −0.029, 
p = 0.904
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habenula volumes. Therefore, we are cautious interpreting 
data on separated white and gray matter of the habenula in 
3T-images [22]. Thirdly, a shift of diagnosis during the clini-
cal course, e.g., to a disorder of the bipolar spectrum, espe-
cially in those patients with first-time depression included in 
the study, is to be expected according to the literature, with a 
concomitant impact on habenula volumes. Long-term follow-
up investigations are therefore recommended [46].

In conclusion, this is the first ultra-high-resolution 7T 
MR-based volumetric investigation of the human habenula 
which showed a significant correlation between habenula 
volume and disease severity in unmedicated MDD patients 
and an increase in habenula volume in moderate-to-severely 
depressed unmedicated (but not medicated) MDD patients 
compared to mildly depressed patients, respectively. Evi-
dence is given for a general sex effect across all groups, 
whereas lateralized volume reductions only in females as 
reported at lower MR field strengths could not be replicated.
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